Why Markets Need a Finance-Specific Knowledge Graph
29 January 2026
Without explicit domain structure, even strong LLMs can miss nuance or retrieve results that look relevant but arenโt. Thatโs especially true in financial markets, where language is dense, overlapping, and constantly evolving.
A finance-specific Knowledge Graph helps by:
โข ๐๐บ๐ฝ๐ฟ๐ผ๐๐ถ๐ป๐ด ๐ฟ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น ๐ฎ๐ฐ๐ฐ๐๐ฟ๐ฎ๐ฐ๐ through domain specific themes and well defined relationships between concepts
โข ๐ฃ๐ฟ๐ฒ๐๐ฒ๐ฟ๐๐ถ๐ป๐ด ๐ฐ๐ผ๐ป๐๐ฒ๐
๐ when the same term carries different meanings across markets
โข ๐ฅ๐ฒ๐ฑ๐๐ฐ๐ถ๐ป๐ด ๐ณ๐ฎ๐น๐๐ฒ ๐ฝ๐ผ๐๐ถ๐๐ถ๐๐ฒ๐, supported by paragraph level atomisation and precise disambiguation
โข ๐๐๐ฑ๐ถ๐๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ ๐ฏ๐ ๐ฑ๐ฒ๐๐ถ๐ด๐ป, enabling transparent tracing of how concepts link, evolve, and inform outputs
โข ๐๐ป๐ฎ๐ฏ๐น๐ถ๐ป๐ด ๐๐ฟ๐ฎ๐ฝ๐ต๐ฅ๐๐, providing the structured domain backbone that makes RAG reliable, itโs how you win with RAG
Our knowledge graph of more than ๐ฎ๐ฌ๐ฌ,๐ฌ๐ฌ๐ฌ ๐ณ๐ถ๐ป๐ฎ๐ป๐ฐ๐ถ๐ฎ๐น ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐ is ๐ฟ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐น๐ ๐๐ฝ๐ฑ๐ฎ๐๐ฒ๐ฑ ๐ฏ๐ ๐ผ๐๐ฟ ๐๐ฒ๐ฎ๐บ, ensuring human oversight where it matters. This creates a clear, evolving map for models to navigate, one that reduces ambiguity, keeps pace with new themes, and provides a stable foundation for interpreting complex topics.
The takeaway is simple:
๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ฑ ๐ฑ๐ผ๐บ๐ฎ๐ถ๐ป ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ, ๐บ๐ฎ๐ถ๐ป๐๐ฎ๐ถ๐ป๐ฒ๐ฑ ๐๐ถ๐๐ต ๐ต๐๐บ๐ฎ๐ป ๐ผ๐๐ฒ๐ฟ๐๐ถ๐ด๐ต๐, ๐บ๐ฎ๐ธ๐ฒ๐ ๐ณ๐ถ๐ป๐ฎ๐ป๐ฐ๐ถ๐ฎ๐น ๐๐ ๐บ๐ฒ๐ฎ๐ป๐ถ๐ป๐ด๐ณ๐๐น๐น๐ ๐บ๐ผ๐ฟ๐ฒ ๐ฎ๐ฐ๐ฐ๐๐ฟ๐ฎ๐๐ฒ.
